163 research outputs found

    Dynamic speed adaptive classified (D-SAC) data dissemination protocol for improving autonomous robot performance in VANETs

    Get PDF
    In robotics, mechanized and computer simulation for accurate and fast crash detection between general geometric models is a fundamental problem. The explanation of this problem will gravely improve driver safety and traffic efficiency, vehicular ad hoc networks (VANETs) have been employed in many scenarios to provide road safety and for convenient travel of the people. They offer self-organizing decentralized environments to disseminate traffic data, vehicle information and hazardous events. In order to avoid accidents during roadway travels, which are a major burden to the society, the data, such as traffic data, vehicle data and the road condition, play a critical role. VANET is employed for disseminating the data. Still the scalability issues occur when the communication happens under high-traffic regime where the vehicle density is high. The data redundancy and packet collisions may be high which cause broadcast storm problems. Here the traffic regime in the current state is obtained from the speed of the vehicle. Thus the data reduction is obtained. In order to suppress the redundant broadcast D-SAC data, dissemination protocol is presented in this paper. Here the data are classified according to its criticality and the probability is determined. The performance of the D-SAC protocol is verified through conventional methods with simulation

    COMPARISON AND IMPLEMENTATION OF ROUTING AND WAVELENGTH ASSIGNMENT STRATEGIES IN WDM OPTICAL NETWORKS UTILIZING WITHOUT WAVELENGTH CONVERSION TECHNIQUE (WWCT)

    Get PDF
    This Paper concentrates on the comparison and realization of routing and Wavelength-Assignment (RWA) quandry in wavelength-routed optical WDM systems. The greater part of the consideration sticks to such systems, which work under the wavelength-continuity constraint, in which light paths are spot up for connection requests between hub sets and a solitary light path should dependably involve the same wavelength on the majority of the connections that it degrees. To set up a light path, a route should be picked and a wavelength corresponding to the light way should be allocated. The connection request is blocked if no wavelength is accessible for this light way on the picked course. In Wavelength Division Multiplexing (WDM) optical systems, there is have to misuse the quantity of associations perceived and to minimize the blocking probability. The RWA situation is analyzed and various routing and wavelength task procedures are compared and executed. The outcome investigation demonstrates the best exhibitions of blocking probability in all the wavelength task procedures that are executed

    The intracellular domain of sortilin interacts with Amyloid precursor protein and regulates its lysosomal and lipid raft trafficking

    Get PDF
    The processing of Amyloid precursor protein (APP) is multifaceted, comprising of protein transport, internalization and sequential proteolysis. However, the exact mechanism of APP intracellular trafficking and distribution remains unclear. To determine the interaction between sortilin and APP and the effect of sortilin on APP trafficking and processing, we studied the binding site and its function by mapping experiments, colocalization, coimmunoprecipitation and sucrose gradient fractionation. We identified for the first time that sortilin interacts with APP at both N- and C-terminal regions. The sortilin-FLVHRY (residues 787-792) and APP-NPTYKFFE (residues 759-766) motifs are crucial for the C-terminal interaction. We also found that lack of the FLVHRY motif reduces APP lysosomal targeting and increases APP distribution in lipid rafts in co-transfected HEK293 cells. These results are consistent with our in vivo data where sortilin knockout mice showed a decrease of APP lysosomal distribution and an increase of APP in lipid rafts. We further confirmed that overexpression of sortilin-FLVHRY mutants failed to rescue the lysosomal degradation of APP. Thus, our data suggests that sortilin is implicated in APP lysosomal and lipid raft targeting via its carboxyl-terminal F/YXXXXF/Y motif. Our study provides new molecular insights into APP trafficking and processing.Miao Yang, Balaji Virassamy, Swarna Lekha Vijayaraj, Yoon Lim, Khalil Saadipour, Yan- Jiang Wang, Yan-Chuang Han, Jin-Hua Zhong, Carlos R. Morales, Xin-Fu Zho

    Synthetic aperture radar and optical remote sensing image fusion for flood monitoring in the Vietnam lower Mekong basin: a prototype application for the Vietnam Open Data Cube

    Get PDF
    Flood monitoring systems are crucial for flood management and consequence mitigation in flood prone regions. Different remote sensing techniques are increasingly used for this purpose. However, the different approaches suffer various limitations, including cloud and weather effects (optical data), and low spatial resolution and poor colour presentation (synthetic aperture radar data). This study fuses two data types (Landsat and Sentinel-1) to overcome these limitations and produce better quality images for a prototype flood application in the Vietnam Open Data Cube (VODC). Visual and quantitative evaluation of fused image quality revealed improvement in the images compared with the original scenes. Ground-truth data was used to develop the study flood extraction algorithm and we found a good agreement between our results and SERVIR Mekong (a joint initiative by the US agency for International Development (USAID), National Aeronautics and Space Administration (NASA), Myanmar, Thailand, Cambodia, Laos and Vietnam) maps. While the algorithm is run on a personal computer (PC), it has a clear potential to be developed for application on a big data system

    Comparative analyses of CTCF and BORIS occupancies uncover two distinct classes of CTCF binding genomic regions.

    Get PDF
    BackgroundCTCF and BORIS (CTCFL), two paralogous mammalian proteins sharing nearly identical DNA binding domains, are thought to function in a mutually exclusive manner in DNA binding and transcriptional regulation.ResultsHere we show that these two proteins co-occupy a specific subset of regulatory elements consisting of clustered CTCF binding motifs (termed 2xCTSes). BORIS occupancy at 2xCTSes is largely invariant in BORIS-positive cancer cells, with the genomic pattern recapitulating the germline-specific BORIS binding to chromatin. In contrast to the single-motif CTCF target sites (1xCTSes), the 2xCTS elements are preferentially found at active promoters and enhancers, both in cancer and germ cells. 2xCTSes are also enriched in genomic regions that escape histone to protamine replacement in human and mouse sperm. Depletion of the BORIS gene leads to altered transcription of a large number of genes and the differentiation of K562 cells, while the ectopic expression of this CTCF paralog leads to specific changes in transcription in MCF7 cells.ConclusionsWe discover two functionally and structurally different classes of CTCF binding regions, 2xCTSes and 1xCTSes, revealed by their predisposition to bind BORIS. We propose that 2xCTSes play key roles in the transcriptional program of cancer and germ cells

    Parallel and Distributed Computing for High-Performance Applications

    Get PDF
    The study of parallel and distributed computing has become an important area in computer science because it makes it possible to create high-performance software that can effectively handle challenging computational tasks. In terms of their use in the world of high-performance applications, parallel and distributed computing techniques are given a thorough introduction in this study. The partitioning of computational processes into smaller subtasks that may be completed concurrently on numerous processors or computers is the core idea underpinning parallel and distributed computing. This strategy enables quicker execution times and enhanced performance in general. Parallel and distributed computing are essential for high-performance applications like scientific simulations, data analysis, and artificial intelligence since they frequently call for significant computational resources. High-performance apps are able to effectively handle computationally demanding tasks thanks in large part to parallel and distributed computing. This article offers a thorough review of the theories, methods, difficulties, and developments in parallel and distributed computing for high-performance applications. Researchers and practitioners may fully utilize the potential of parallel and distributed computing to open up new vistas in computational science and engineering by comprehending the underlying concepts and utilizing the most recent breakthroughs

    A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity.

    Get PDF
    Keratin intermediate filaments (KIFs) protect the epidermis against mechanical force, support strong adhesion, help barrier formation, and regulate growth. The mechanisms by which type I and II keratins contribute to these functions remain incompletely understood. Here, we report that mice lacking all type I or type II keratins display severe barrier defects and fragile skin, leading to perinatal mortality with full penetrance. Comparative proteomics of cornified envelopes (CEs) from prenatal KtyI(-/-) and KtyII(-/-)(K8) mice demonstrates that absence of KIF causes dysregulation of many CE constituents, including downregulation of desmoglein 1. Despite persistence of loricrin expression and upregulation of many Nrf2 targets, including CE components Sprr2d and Sprr2h, extensive barrier defects persist, identifying keratins as essential CE scaffolds. Furthermore, we show that KIFs control mitochondrial lipid composition and activity in a cell-intrinsic manner. Therefore, our study explains the complexity of keratinopathies accompanied by barrier disorders by linking keratin scaffolds to mitochondria, adhesion, and CE formation

    Alterations in the transcriptome and antibiotic susceptibility of Staphylococcus aureus grown in the presence of diclofenac

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) which has been shown to increase the susceptibility of various bacteria to antimicrobials and demonstrated to have broad antimicrobial activity. This study describes transcriptome alterations in <it>S. aureus </it>strain COL grown with diclofenac and characterizes the effects of this NSAID on antibiotic susceptibility in laboratory, clinical and diclofenac reduced-susceptibility (Dc<sup>RS</sup>) <it>S. aureus </it>strains.</p> <p>Methods</p> <p>Transcriptional alterations in response to growth with diclofenac were measured using <it>S. aureus </it>gene expression microarrays and quantitative real-time PCR. Antimicrobial susceptibility was determined by agar diffusion MICs and gradient plate analysis. Ciprofloxacin accumulation was measured by fluorescence spectrophotometry.</p> <p>Results</p> <p>Growth of <it>S. aureus </it>strain COL with 80 μg/ml (0.2 × MIC) of diclofenac resulted in the significant alteration by ≥2-fold of 458 genes. These represented genes encoding proteins for transport and binding, protein and DNA synthesis, and the cell envelope. Notable alterations included the strong down-regulation of antimicrobial efflux pumps including <it>mepRAB </it>and a putative <it>emrAB/qacA</it>-family pump. Diclofenac up-regulated <it>sigB </it>(σ<sup>B</sup>), encoding an alternative sigma factor which has been shown to be important for antimicrobial resistance. <it>Staphylococcus aureus </it>microarray metadatabase (SAMMD) analysis further revealed that 46% of genes differentially-expressed with diclofenac are also σ<sup>B</sup>-regulated. Diclofenac altered <it>S. aureus </it>susceptibility to multiple antibiotics in a strain-dependent manner. Susceptibility increased for ciprofloxacin, ofloxacin and norfloxacin, decreased for oxacillin and vancomycin, and did not change for tetracycline or chloramphenicol. Mutation to Dc<sup>RS </sup>did not affect susceptibility to the above antibiotics. Reduced ciprofloxacin MICs with diclofenac in strain BB255, were not associated with increased drug accumulation.</p> <p>Conclusions</p> <p>The results of this study suggest that diclofenac influences antibiotic susceptibility in <it>S. aureus</it>, in part, by altering the expression of regulatory and structural genes associated with cell wall biosynthesis/turnover and transport.</p
    • …
    corecore